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ABSTRACT _

>

Since 1959_ measurements of upper atmosphere winds have been made

from Wallops Island_ Virginla_ utilizing the sodium vapor technique. To

date_ measurements from 22 different vapor trails have been analyzed. In

the height range 85 to 135 kmj the measurements show that the winds have

Analysis shows that the 8-hour componentlarge quasi-periodic components.

is dominant over the entire range.

these altitudes is proposed.

A new picture of the wind structure at
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SECTIONi

INTRODUCTION

During the past four years_ the sodium vapor technique has been used

to measureupper atmospheric winds from Wallops Island_ Virginia. The

method has been completely described elsewhere. (I-4) Briefly_ winds are

derived from the rate of motion of a trail of sodium vapor ejected from

a rocket during twilight. Resonancescattering of sunlight in the sodium

D-line provides sufficient brightness for the trail to be photographed

during twilight. Triangulation techniques are used to determine exact

trail positions from simultaneous photographs taken at widely separated

known locations. The data are reduced by an analog method which allows

very precise wind determinations at height intervals as small as desired.

Results from a total of 22 different trails are reported here. About

half of these have previously been published. (5_6) The remainder have had

only limited distribution in contractual reports. (2_7_8) The altitude

range of the data varies from trail to trail_ the upper limit being deter-

mined by rocket performance. Three types of rockets have been used: Nike-

Cajuns which reach about 140 km_Nike-Apaches which usually reach about 180

km_ and Nike-Asps which have reached 220 km. The lower limit is often det-

ermined by atmospheric conditions and partial cloud cover.

Below about 80 km chemical recombination of the atomic sodium is rapidj

and the trail is white rather than the characteristic orange or red of sodium



or lithium vapor. The white trail is more affected by atmospheric attenua-

tion at low elevation angles from distant locations and generally persists

for only a short time. Photography of this portion is generally possible

from close-in sites_ but often there is so muchoverlapping of the trail

in the viewing direction that accurate winds cannot be determined in the

observing time available. Thus_ although measurementshave been madefrom
!

50 km to 200 km_ the largest number of measurements is in the range 85 to

135 km. All the wind profiles that have been obtained up until now are

included in Appendix A.



SECTION2

WINDDATA

2. i CLASSIFICATIONOFWINDPROFILES

The wind profiles and trails maybe grouped into three classes_ illus-

trated in Figure i, where the wind speed and wind direction (direction t_o_o-

ward which the wind is blowing) are plotted separately against height.

Photographs of the corresponding trails_ taken from the launch site_ are

shown in Figure 2.

Class I. The direction varies rapidly with height but does not change

by more than 90° . Wind speed fluctuations with height are numerous_ but

usually do not amount to more than 40 m/sec.

Class II. The defining feature of these trails is a single high-shear

region, usually between I00 and ii0 km, in which a large directional change_

usually 180°_ occurs and in which the wind speed attains values as high as

150 m/sec. Above and below this region_ the wind speed is small.

Class III. These trails are characterized by a continuous, spiraling

change of direction with height_ the wind speed gradually increasing with

height until a maximum of 120 to 150 m/sec is reached close to Ii0 km. Above

this level the wind speed decreases to about 80 m/sec and then_ in most cases,

remains relatively constant at greater heights. The direction of rotation of
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the spiral motion is clockwise, i.e., N-E-S-W, with height.

Of the 22 trails discussed here_ 7 belong to Class I, 6 to Class II,

and 8 to Class III. No seasonal preference is shownby any group. There

are nearly equal numbersof morning and evening measurementsin Class I;

Class II has more morning than evening measurements;and Class Ill has more

evening than morning measurements.

2.2 COMPARISONWITHOTHERMEASUREMENTS

Wind measurementshave been madeby other methods below i00 km.

On several occasions grenade and sodium-vapor experiments have been

madewithin a few minutes of one another. The measuredwinds usually agree

well except in regions of high shear. Here the grenade data give values

averaged over the height interval between successive grenades and do not

show the fine structure of the sodium trails.

Measurementsup to about 60 km with small meteorological rockets have

been obtained on a routine basis from many locations. (9) These measurements

are consistent with the sodium trail measurements.

Most of the reported data on winds above 90 km come from radar observa-

tions of ionized meteor trails. These observations give valuable information

about the periodic wind components and their seasonal variations_ but their

height resolution is much less than that of the sodium trail measurements.

The radar data complement_ rather than overlap_ the sodium-trail data.

4



2.3 PERIODICANDQUASI-PERIODICVARIATIONS

The present data are not well suited to the determination of seasonal

variations_ for two reasons. The total numberof observations is too small

for an analysis of seasonal variations; and almost one third of the data

were obtained during March and April.

The data are somewhatbetter suited to a study of diurnal and semi-

diurnal variations_ since about equal numbersof measurementshave been

madeduring morning and evening twilight and the local times of sunrise

and sunset vary by nearly three hours through the year. However_the number

of measurementsproved to be too small to allow the periodic components to

be separated from the non-periodic components. Radar measurementsof ionized

meteor trails at Jodrell Bank(I0) and Adelaide (II) have established that at

these latitudes the amplitudes of the periodic componentsare much less

than the amplitude of the non-periodic components.

The prevalence of the non-periodic component leads one to expect that

if the wind vectors derived from different flights for a given height are

plotted on the samepolar diagram the points will tend to be distributed

in a more or less randomway over a certain area. The observed distribu-

tions of data points are conspicuously non-random_however. They tend to

form well-defined chains consisting of from three to eight points. In every

case the chains maybe connected to form a closed curve consisting of three

loops; see Figures 3-31 and Table i_ where dates_ times_ and height ranges

are given for the flights designated in the figures by the numerals 2 through

27_ 7S_ and 8S.
5



TABLEI

No.

i

2

3

4

5

6

7

8

9

7S

8S

I0

ii

12

13

14

15

16

17

18

19

20

21

22

25

26

27

23

24

Da te

(1959)

17 August
18 November

(1960)

24 May
9 December

(1961)

19 April

19 April

20 April

20 April

21 April

7 September

8 September

16 September

17 September

(1962)

i March

2 March

23 March

27 March

17 April

6 June

7 November

30 November

5 December

(1963)

20 February

21 February

20 May

21 May

21 May

23 May

24 May

Twilight

AM

PM

PM

AM

AM

PM Sardinia

AM Sardinia

PM

AM

PM Sardinia

AM Sardinia

PM

AM

PM

AM

PM

PM

AM

PM

AM

AM

PM

PM

PM

PM Sardinia

AM Sardinia

PM Sardinia

PM

PM

Range of

Height in km

140-220

94-163

84-169

90-138

92-154

83-183

108-189

81-165

82-162

90-200

100-200

78-146

96-172

71-126

65-127

59-140

80-I18

76-191

56-137

68-152

77-157

83-138

58-151

83-164

94-195

98-200

84-205

81-205

84-170



That a closed curve of somekind can be drawn through twenty-eight

data points is in itself without significance. What is significant is

that the same_relatively simple_ type of curve can be drawn through

twenty-nine distinct sets of data points and that the characteristics of

the curve change smoothly with height. The fact that the wind vectors for

a given flight form a continuous sequencewith height does not explain

this result_ as one can readily see by inspecting the figures. Compare_

for example_Figure 3 (85 km) with Figure 31 (135 km). In Figure 3_ data

points 6j I0_ 14_ 18_ and 20 fall on the innermost loop; in Figure 31_ data

point 6 has movedto the middle loop_ data points I0_ 14_ and 20 have moved

to the outermost loop_ and only data point 18 has returned to the inner loop.

The fact that the wind vectors at a given height trace out -- or at

least stay close to -- closed curves indicates that the winds have a quasi-

periodic character. Becausethe strictly periodic componentsare known to

be small_ the rate at which the wind vector sweepsout its pattern at a given

height must show appreciable departures from the rate that would be appropriate

to strictly periodic motion. This point will be discussed at greater length

in the next section.

The data are insufficient to establish the wind patterns above 135 km

and below 85 km. Above 135 km_ the wind vector has a large prevailing com-

ponent directed toward the south. The region below 85 km has been studied

by other techniques (14-I9).



SECTION 3

MATHEMATICAL REPRESENTATION OF THE WIND DATA

It is convenient to represent the horizontal wind at a given height

as a vector in the complex plane. If u_v denote the components of the

wind in the north and west directions respectively_ we may represent the

wind vector in complex notation by

W= u+iv •

That is_ u and v are_ respectively_ the real and imaginary parts of W.

In quasi-periodic motion u and v depend on a common phase angle _(t).

The dependence may be expressed by the equation

(i)

u(t) = a cos[_(t) + c1] , v(t) = b cos[_(t) +c 2] .

The function _(t) is arbitrary. As _ varies between 0 and 2_ W traces

out an ellipse whose size, shape_ and orientation are determined by the

three parameters a_ b_ and (cI - c2).

In strictly periodic motion _(t) is given by

(2)

where T denotes the period.

function of t.

_(t) = _t = 2_IT _ (3)

In quasi-periodic motion _(t) is a non-linear

If a = b; the ellipse degenerates into a circle. We have found that

the quasi-periodic components into which the wind pattern between 85 and



135 km can be resolved maybe represented reasonably well in a first ap-

proximation by circles. This considerably reduces the numberof parameters

needed for the representation. A more refined representation_ based on el-

lipses_ would require more data than we have as yet accumulated.

The formula

W = W0ei_0 + Wlei(_'_l) + W2ei(2_'_2) + W3ei(3_'_3) (4)

where W0_ WI_ W2_ and W 3 are real numbers_ represents a superposition of

a prevailing component (amplitude W0_ phase _0)_ a "fundamental" (amplitude

WI_ phase 51) , and its first two overtones. The prevailing component merely

displaces the center of the figure. Figures 32-36 are plots of W for vari-

ous values of the amplitudes W i and phases _i' In all the figures_ W 3 > W 2 >

WI; the third overtone has the highest amplitude. Note_ for example_ the re-

semblance between the experimental Figure 21 and the theoretical Figure 35.

For the analysis o[ the data figures_ it is convenient to introduce

two auxiliary quantities_ 52 and 51 . These are defined as follows. Suppose

that W 0 = W I = 0_ so that only the second and third components are present.

The axis of the resultant figure (which passes through the two nodes) makes

an angle 52 with the direction of north. The angle 52 may also be defined

as the direction in which W is a maximum when W 0 = W I = 0. This occurs when

the phases of the second and third components are equal_ i.e,_ when

2_ + _2 = 3@ +_3 ' _ = _2 _3 (5)



Thus

_2 = 3_2 - 2_3 ' (6)

The angle gl is defined as the phase of the first component reckoned

(clockwise) from the direction north_ then

b2 = _i - 2_2 + _3 _

and (7)

_i = _i + _2 - _3

If _i = 0 the pattern will possess bilateral symmetry. A line drawn

through the two nodes will divide the pattern into two parts that are

mirror images of one another. The angle between this line and the direc-

tion of north is then 82' When _I _ 0 the pattern is asymmetrical. The

direction of the outer node is particularly sensitive to the value of gl'

Figure 37 shows b I plotted against the direction of the outer node (measured

from the center of the figure) for a typical set of values of WI_ W2_ and

W 3 .

The magnitude and direction of the prevailing component determine

the position of the center of the pattern. Since the position of the center

cannot be determined with great precision_ the values of W 0 and 50 ( = bO)

are rather uncertain_ especially when W 0 is small. Given approximate values

of the W, for i = i_2_3, one can determine the parameters b I and 82 by com-l

paring the observed pattern with theoretical patterns in a graduated series.

It turns out that the ratios of the W. do not vary much over the observed
I
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height range. Moreover_ the shape of the pattern is not very sensitive

to small variations in these ratios. Because of this_ 81 and 82 can be

evaluated with fair accuracy when the Wi are known only roughly. Having

determined _I and _2_ one obtains the W.l by solving sets of simultaneous

equations that express the distances between selected pairs of points in

terms of the W.° The best-determined parts of the data patterns were
l

used for this purpose.

The values of the W. and D. that emerge from the analysis are in-
I I

dicated on the individual Figures 3-31. In Figures 38-43 these parameters

are plotted against height. In view of the small number of data points

used to determine the individual data patterns and of the rather rough

method of analysis_ all these figures, with the possible exception of the

one for 80_ show remarkably smooth and systematic variation of the plotted

quantity with height. The systematic character of these variations would

seem to leave little doubt that the mathematical representation here em-

ployed has a sound physical basis.

Up until now we have not discussed the information contained in

the local times of the wind measurements. If the winds were strictly

periodic instead of quasi-periodic_ the position of a point on its data

pattern would be determined by its local time. In the theoretical Figures

33-36 the local times are indicated. Roughly speaking_ equal time inter-

vals correspond to equal angular displacements as seen from the center of

the figure. The zero of local time has arbitrarily been made to coincide

with the direction of the figure axis when W I = 0.

Ii



During April 1961, there was a series of closely spaced firings at

Wallops Island and at Sardinia. The times of observation are shown in

Table 2. At almost every height_ the five points 5_ 6_ 7, 8_ 9 occur in

correct sequence. However_the "theoretical" time intervals -- that is,

the time intervals appropriate to strictly periodic motion -- often differ

substantially from the observed time intervals. Table 3 gives all the

information pertaining to time intervals for sequential observations in-

cluded in our data. In some instances_ large discrepancies betweenactual

time interval and the "theoretical" interval probably result from the assign-

ment of a data point to the wrong loop in its pattern_ but there is no doubt

that the rate at which the wind vector at a given height traces out its

pattern departs substantially from the rate appropriate to strictly periodic

motion.

L

12



TABLE2

TIMEOFOBSERVATIONFORTHEAPRIL 1961 SERIES

Number
Approximate Approximate Time

Site LMT EST Difference

5

6

7

8

9

Wallops

Sardinia

Sardinia

Wallops

Wallops

19 April 04.6 hours

19 April 19.2

20 April 04.6

20 April 19.2

21 April 04.6

19 April 04°6 hours

19 April 13.5

19 April 22.9

20 April 19o2

21 April 04°6

8°9 hours

9°4

20.3

9.4

13



SECTION4

DISCUSSION

The preceding analysis leads to the following general conclusions.

(I) At each height_ the observed wind vectors define a pattern which

is accurately reproduced by a theoretical figure composedof prevailing di-

urnal_ semi-diurnal_ and 8-hour components.

(2) The parameters that define the pattern vary smoothly with

height as shown in Figures 38 through 42. The magnitudes of all components

increase to a maximumbetween I00 and ii0 km_and the phase angles change

rapidly in t_is region. This is also the region where the large shears

occur most frequently.

(3) The 8-hour component is dominant at all heights. Sometimes

its magnitude is twice that of the semi-diurnal component. The diurnal

component is small below about 95 km_but increases above this height.

The prevailing componentvaries from near zero to a maximumof 40 m/sec

at 105 km. The direction is generally toward the east below 120 km and

toward the west above,

(4) The motion of the wind vector at a given height is not accurately

periodic; that is_ it is not true in general that

W(t + 24-hr) = W(t); 5(t + 24-hr) = 5(t)

14



This fact shows up when time differences of the successive measurementsin

Table 2 are comparedwith "predicted" time differences obtained from the

corresponding computedmodel. The time differences for the sequential

firings as indicated by the model figures are shown in Table 3. The rate

of rotation of the tip of the wind vector fluctuates by as much as a factor

of three at specific heights. However, average values for a range of heights

at a given time, as well as time averages for a given height, are close to

the predicted values. It follows that at a given instant of time, there is

no unique pattern for the height variation of W or 8. Thus a large varia-

tion of the altitude profiles of the wind is to be expected and is observed.

Previous quantitative information about winds in the height range

under consideration comes mainly from the work of Greenhow (I0_20) and his

co-workers based on a radio-echo technique devised by Greenhow. This tech-

nique enables one to measure the velocities of one or more short sections

of a suitably oriented ionization trail, such as are produced in large quan-

tities in the height range 85-100 km by meteors. The accompanying absolute

height determinations have an uncertainty of _2 km; however, Greenhow ex-

tended his technique to permit direct measurements of vertical gradients of

horizontal winds (wind-shear). From a very extensive set of observations_

Greenhow and his co-workers determined_ for every month of the year_ the

height-averaged amplitudes and phases of the prevailing_ diurnal_ semi-diurnal_

and terdiurnal components of the horizontal wind in the height range 90-94 kin.

They also determined the vertical gradients of these quantities in the height

range 90-100 km. Finally they determined the frequency distribution of the

15



TABLE3

TIME INTERVALIN HOURSOF SEQUENTIAL
OBSERVATIONSAS OBTAINEDFROMMODELFIGURES.

(Occasionally two time intervals were possible)

Height
km

85
86.25
88.75

5-6 6-7
Flisht Number

8-9 25-26 7S-8S 12-13

90 i0
91.25 3
92.5 3 3
93.75 4 9
95 5 i0
96.25 5 5
97.5 13 5 I
98.75 ii 20 0

I00 5 8 17
i01.25 9 7 7
102.5 12 I0 7
103.75 ii 3(17) 3
105 5 9 i0
106.25 ii ii 5
107.5 7 13 4 14
108.75 7 i0 i0 19

8 8 3 19
8 3 19(3) 171
6 3 19 9
7 3 i I0
7 3 2 ii
7 4 I i0

Ii0
111.25
112.5
113.75
115
116.25

120 6 4 0 23
125 5 3 i0 2
130 5 4(9) 2 9
135 5 9 0 19

17
18
19
I0
13
13
13
14

16
17
I0
I0
Ii
I0

i0
i0
I0
i0

I0
II

3

6
4
9
9
9

i0
9
0

8
12
19
18
Ii
8
8

14

7
Ii
0
0

23
23

i0-ii

20
20
20

6

12

8

9

i0

6

4

5

5(12)

13

16

15

i0

14

23

I0

17

5

19

Actual

time in-

terval

in hours

8.9 9.4 9.4 8.5 I0 11.5 10.4

16



amplitude of the horizontal wind and the frequency distribution of the wind

shear in the sameheight range.

The experimental results obtained by the radio-echo method indicate

that the non-periodic componentof the horizontal wind is much larger_ in the

height range under considerationj than the prevailing and periodic components.

However_owing to their limited height resolution_ they contain little infor-

mation about the nature of the non-periodic component. This is precisely the

kind of information that the data presented here supply. On the other hand_

these data supply little informmtion about strictly periodic variations. The

two experimental approaches are thus largely complementary.

On the basis of the radar dataj the winds in the region 85-105 km have

been envisioned as madeup of three contributions: a prevailing component_

similar to those that occur at lesser heights; a small tidal or thermally

driven componentwhich_ like the tidal winds at lesser bei_bts_ can be ana-

lyzed into a diurnalj a semi-diurnal and a terdiurnal component_and a non-

periodic component_much larger than the other two and characterized by steep
-i -ivertical gradients_ sometimes exceeding 0. I sec (= I00 m sec km-l).- The

radio-echo observations_ as well as earlier optical observations of persis-

tent meteor trails (21) showedthat the non-perlodic winds had a very narrow

energy spectrum_ Fourier componentswith a vertical wavelength of less than

I km being essentially absent. The non-periodic winds could therefore not be

described as turbulent in the technical hydrodynamic sense. The wavelike forms

of persistent meteor trails led Hines (22) to attribute the non-periodic winds

to upward-propagating waves generated near the surface of the earth and

17



combining the properties of sound waves and internal gravity waves. This

interpretation has been widely accepted.

Although the picture just sketched seemsto rest on a solid observa-

tional basisj it is by no meansthe only picture that is consistent with

the radio-echo dataj which afford a very incomplete_ statistical descrip-

tion of what is_ at least numerically_ the major componentof the horizon-

tal winds. In addition 3 Hines's interpretation of the non-periodic winds

raises certain theoretical questions that have not yet been adequately

answered. For example: Howare the travelling waves excited? Hines's

hypothesis requires a non-periodic driving mechanismconsiderably more ef-

fective than the processes responsible for the periodic winds - presumably(23)

the absorption of insolation by water vapor and by ozone. What is the

nature of this mechanism?

The data from the sodium trails suggest a strikingly different pic-

ture. The resultant wind at any height in the height range 85 to 135 km may

be represented by a prevailing componentand cyclic componentswith periods

of 24 hours_ 12 hours_ and 8 hours. The magnitudes of the cyclic components

vary smoothly with height_ but there is a "phase anomaly". That is_ the phase

is a non-linear function of the time. The lack of correlation between the

phase anomaly at different heights gives rise to the variability of the wind

profiles.

On the present picture_ virtually the entire amplitude of the wind at

a given height can be attributed to periodic_ thermal driving forces. There

18



is no room in this picture for traveling waves produced by non-periodic

driving forces. The dominanceof the 8-hr componentshould find a quanti-

tative explanation in the resonance characteristics of the atmosphere in

this height range. In this connection_ we recall that Butler and Small(24)

have recently shownthat the amplitude of the 24-hr component is greatly

reduced_ in comparison with the 12-hr component_because of the structure

of the atmosphere below 80 km.

The origin of the phase anomaly remains to be explained. Wetenta-

tively attribute it to magnetohydrodynamiceffects which enhance the ef-

fective viscous coupling between adjacent layers and to variability in the

reflection properties of the atmosphere above 135 km. This question will

be discussed at greater length in a forthcoming publication.

It is perhaps significant that data from two trails at Wallops Island

are not contained in the closed loop figures. The observations of 17 August

1959 are not shownon the plots since the wind speeds were greater than the

scale of the graph. Someof the data from 24 May 196_although plotted_ are

not contained in the figures. These observations were madeduring times of

very great solar activity and the upper winds were noticeably different from

the usually observed structure.

19
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(a) (b)

Figure 2.

(c)

Photographs of the sodium trail taken 200 sec after launch,

from the launch site, on (a) 23 March 1962, (b) 7 November 1962,
and (c) 20 February 1963. Note the obvious difference in
appearance.
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APPENDIX A

Wind measurements from 22 sodium vapor trails over Wallops Island

are included° A plot of both wind speed and direction of trail

transport is given as a function of altitude for each trail° The time,

date and altitude range is shown on each ploto The figure numbers

correspond to flight numbers in Table 2 of this report.
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